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Abstract. This paper describes the formal approach to modeling IETF
Session Initiation Protocol (SIP) and its services in SDL. The main ob-
jective is to discover the advantages and shortcomings of using a formal
language such as SDL to model an IETF application signaling protocol:
SIP. Evaluating the feasibility of using CASE tools such as Telelogic Tau
in modeling a protocol as complex as SIP is also the interest of this study.
By creating an “Abstract User” interface, we discover the importance of
use case analysis in specifying SIP services more precisely. In addition,
the object-oriented extension in SDL-96 has been applied to some ex-
tent in the modeling process; we create an SDL framework that allows
us to reuse and to add SIP services to the core protocol more easily by
applying SDL type inheritance in our model. Furthermore, we discuss
enhancements that may be made to the SDL language and Tau tools to
improve the modeling experience of IETF protocols.

Keywords: SIP, Internet Telephony, UML, Use Case, SDL, MSC, Tele-
logic, Software Specification, Design Methodology

1 Introduction

With the increasing popularity of voice chats and Internet long distance calls,
many companies foresee Internet telephony and voice applications would be
a high revenue growth segment of the telecommunication market in the next
few years. In the Internet telephony world, many researchers believe the IETF
Session Initiation Protocol (SIP) is the emerging Voice over IP (VoIP) signal-
ing protocol that can compete against ITU H.323 protocol suites [1, 2]. SIP
was originally designed as a simple call setup and handling protocol between
user terminals. However, it has also been extended to address VoIP signaling at
carrier-grade level and customer-premise telephony applications. Although re-
searchers believe many new types of voice applications can be built with SIP,
the flexibility of the SIP header and its unique user agent-proxy architecture
would complicate the problem of feature interactions [4, 5, 6]. Thus, we have
developed an SDL model of SIP and its sample services [1, 3] to investigate the
feature interaction problem. However, the emphasis of this paper is to discuss
our experience of modeling a semantic rich application protocol like SIP using
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the SDL language and the CASE tool called Telelogic Tau [7]. The feature in-
teraction problem is beyond the scope of this paper. Furthermore, we have used
version 4.3 and 4.4 of Telelogic Tau in our modeling exercise. The next gener-
ation version of Telelogic Tau called “Tau G2” was still under development by
Telelogic Inc. and was unavailable to us.

This paper is organized as follows: Section 2 presents an overview of the SIP
protocol. Section 3 gives an overview of our design methodology which is further
detailed in the subsequent sections. Section 4 explains the steps of applying use
case analysis and deriving our use case scenarios. Section 5 describes the process
of converting sample service call flows into Message Sequence Charts (MSC)
which represent important test case scenarios. Section 6 details the structural
design of the model. Section 7 illustrates the behavior specification of the SIP
model. Section 8 explains the steps of validating and verifying the SDL model
using an SDL CASE tool called Telelogic Tau. Section 9 discusses potential
enhancements to and our experience using SDL and Tau tools to model SIP.
Finally, the paper ends with a conclusion and discussion of future work.

2 Overview of SIP

SIP (Session Initiation Protocol) is an application-layer multimedia control pro-
tocol standardized under IETF RFC 2543 [1]. Similar to most World Wide Web
protocols, SIP has an ASCII-based syntax that closely resembles HTTP. This
protocol can establish, modify and terminate multimedia sessions including mul-
timedia conferences, Internet telephony calls, and similar applications. SIP can
also initiate multi-party calls using a multipoint control unit (MCU) or fully
meshed interconnections instead of multicast. SIP offers five facets of establish-
ing and terminating multimedia communications [1] but we focus only on call
setup and call handling in this research because they are the central functions of
any telephony services and offer interesting behaviors for formal modeling. Call
setup is defined as the establishment of call parameters at both called and calling
party. Call handling is defined as the ability to manage mid-call and third-party
call control such as call transfer and call waiting, after the initial call has been
setup and to manage termination of these calls.

Under the SIP model, signaling parties communicate with each other through
asynchronous messaging. Because SIP is a transport-independent signaling pro-
tocol, SIP messages can be transferred via UDP, TCP, or other transport proto-
cols. There are three types of messages: request, response, and acknowledgment.
In a basic two party call setup as illustrated in Fig. 1, the initiator ‘A’ sends
an “INVITE” request to the called party ‘B’ to establish a unicast multimedia
session (a conference call would require multicast sessions). The “METHOD”
field in a SIP request message indicates the action to be performed, and in this
case, “INVITE” is the typical call setup and handling SIP request action. Then,
the called party would generally reply with one or more appropriate response
messages, and the caller would finally acknowledge the final “OK” response by
sending an “ACK” message (which is considered as a special request message) to
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Fig. 1. User Agent A calls B via Proxies X and Y

the called party. Upon reception of the “ACK” message, the voice media would
be established between the two parties [1].

To cancel a previous request, the request initiator may send a “CANCEL”
request message to the called party. To terminate an existing session, the member
of the session who desires to terminate the session can send a “BYE” request
message to the other party. In an N-party call session, the initiator of a SIP
request does not necessarily have to be a member of the session to which it is
sending the invite. Media and participants can be added to or removed from an
existing session by sending “INVITE” message(s) with new parameters in the
SDP [8] after the initial call setup. To register the location of the session member,
the member can send a “REGISTER” message to a SIP registrar that serves
as a lookup directory. There are other SIP methods that have been defined, for
example, “INFO”. Additional SIP methods can also be added to the standard [1];
however, these are beyond the scope of this paper.

In SIP terminology, a call consists of all participants in a conference invited
by a common source. A SIP call is identified by a globally unique call-id. Thus,
if a user is, for example, invited to the same multicast session by several people,
each of these invitations will be a unique call. However, after the multipoint call
has been established, the logical connection between two participants is a call leg,
which is identified by the combination of “Call-ID”, “To”, and “From” header
fields. A point-to-point Internet telephony conversation maps into a single SIP
call. In a call-in conference using an MCU, each participant uses a separate call
to invite himself to the MCU. The sender of a request message or the receiver
of a response message is known as the client, whereas the receiver of a request
message or the sender of a response message is known as a server. A user agent
(UA) is a logical entity, which contains both a user agent client and user agent
server, and acts on behalf of an end-user for the duration of a call. A proxy is
an intermediary program that acts as both a server and a client for the purpose
of making requests on behalf of other clients. A proxy may process or interpret
requests internally or by passing them on, possibly after translation, to other
servers (Fig. 1). A reader should not confuse the SIP client and server with the
initiator (caller or originator) and callee.
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OK 200 SIP/2.0

Via:SIP/2.0/UDP gtwy1.uottawa.ca;branch=8348

;maddr=137.128.16.254;ttl=16

Record-Route: gtwy.ee.uottawa.ca

From:  Bill Gate <sip:bill@Microsoft.com> 

To: Ken Chan <sip:ken@uottawa.ca>

Contact: Ken Chan <sip:ken@site.uottawa.ca>

Call-ID: 56258002189@site.uottawa.ca

CSeq: 1 INVITE 

Content-Type: application/sdp 

Content-Length: 187 

INVITE sip:ken@ee.uottawa.ca SIP/2.0

Via: SIP/2.0/UDP gtwy1.uottawa.ca;branch=8348

;maddr=137.128.16.254;ttl=16

Via: SIP/2.0/UDP gtwy.ee.uottawa.ca

Record-Route: gtwy.ee.uottawa.ca

From: Bill Gate <sip:bill@Microsoft.com> 

To: Ken Chan <sip:ken@uottawa.ca>

Contact: Ken Chan <sip:ken@site.uottawa.ca>

Call-ID: 56258002189@site.uottawa.ca

CSeq: 1 INVITE 

Subject: SIP will be discussed, too 

Content-Type: application/sdp 

Content-Length: 187 

v=0

o=bill 53655765 2353687637 IN IP4 224.116.3.4 

s=RTP Audio

i=Discussion of .Net

c=IN IP4 224.2.0.1/127

t=0 0 

m=audio 3456 RTP/AVP 0 

Fig. 2. INVITE Request from Bill to Ken (left) and OK Response without SDP
from Ken to Bill (right) Captured at gtwy.ee.uottawa.ca

A user agent or a proxy is said to contain both client and server and can act
as either a client or a server, but not both simultaneously in the same transac-
tion [1].

What makes SIP interesting and different from other VoIP protocols are the
message header and body. Like HTTP, a SIP message, whether it is a request,
response, or acknowledgment message, consists of a header and a body. A sample
“INVITE” request message body is shown in Fig. 2:

The top portion of the message is the message header. The first line is
the request line, which contains the Method name ‘INVITE’, the Request-URI
(ken@site.uottawa.ca), and the SIP Version. The Request-URI names the cur-
rent destination of the request. It generally has the same value as the “To”
header field but may be different if the caller is given a cached address that
offers a more direct path to the callee through the “Contact” field. The “From”
and “To” header fields indicate the respective registration address of the caller
and of the callee. They usually remain unchanged for the duration of the call.
The “Via” header fields are optional and indicate the path that the request has
traveled so far. This prevents request looping and ensures replies take the same
path as the requests, which assists in firewall traversal and other unusual rout-
ing situations. Only a proxy may append its address as a “Via” header value to
a request message. When the corresponding response message arrives at a proxy,
the proxy would remove the associated “Via” header from the response message
header. The “Record-Route” request and response header fields are optional
fields and are added to a request by any proxy that insists on being in the path
of subsequent requests for the same call leg. It contains a globally reachable
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Request-URI that identifies the proxy server. “Call-Id” represents a globally
unique identifier for the current call session. The Command Sequence (“CSeq”)
consists of a unique transaction-id and the associated request method. It allows
user agents and proxies to trace the request and the corresponding response
messages associated with the transaction. The “Content Type” and “Content-
Length” header fields indicate the type of the message body’s content and the
length of the message body measured in bytes.

The sample response, excluding the associated SDP body in Fig. 2, indicates
a success 2XX response (2XX is a success response code in the range of 200
and 299) returned by the callee. The first line of a response message is the
status line that includes the response string, code, and the version number. It
is important to note that “Via” header fields are removed from the response
message by the corresponding proxies on the return path. When the calling user
agent client receives this success response, it will send an “ACK” message that
has a very similar format as the “INVITE” request message, except the Method
name would be “ACK” instead of “INVITE” in the request line. Note that SDP
is not required in the body of the “ACK” message.

We have discussed only some of the key header fields in SIP. There are many
header fields available in SIP and the header can become very complex. The
associated RFC [1] is recommended for further details on SIP. In addition, the
SIP community has specified a variety of traditional telephony services for SIP
in [3, 9, 10]: Call Forward Busy (CFB), Call Waiting (CW), Originator Call
Screening (OCS), Terminating Call Screening (TCS), . . . . In the case of CFB,
user ‘A’ calls user ‘B’ who is busy and replies with a busy response message.
Then, the proxy will forward the call to user ‘C’. Because we have implemented
very few advanced Internet telephony services (such as Call Forking), we will
use CFB as the sample SIP service to describe our modeling approach in the
subsequent sections.

3 Design Approach

Though the end result of this formal modeling exercise is to produce an SDL [11]
model that serves as a formal specification of SIP and some of the sample ser-
vices, the modeling exercise fits into a bigger picture: the overall development
process to develop reliable SIP implementation. Before we dive right into the
details of the SDL model, we present the overall design approach that we use in
this project. Not surprisingly, the process is highly iterative by nature because
the specifications of SIP services are a collection of informal textual service de-
scriptions and sample call flows that do not offer all the detailed requirements up
front. The process is best described in Fig. 3, as a typical software development
lifecycle, except it has incorporated formal modeling.

Tools that are based on formal methods can be used to ensure the final SDL
model would meet these requirements. In a large project, we believe a system
modeling team takes the responsibility of building system models and verifying
that all requirements, particularly performance requirements, can be met. The
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Fig. 4. Iterative Specification Process

system model serves as the final specification resulting from the requirement
analysis. The design and implementation teams may use tools to synthesize the
implementation or manually translate the specification to code. In this paper,
the focus is on the generation of message sequence charts as both our use case
scenarios and test cases, and the modeling of SIP and its services as a SDL
system model. Synthesis is beyond the scope of this paper.

After the sample service scenarios are translated to message sequence charts,
an SDL model of SIP and selected services is created. We found that it is useful
to define three sets or versions of the SDL models:

1. the initial model;
2. the version that complies with the published specification (the standard

model);
3. the refined (final) version that includes the preventive measures for feature

interactions (the refined model).

In Fig. 4, we show that the initial models involve validation of each feature
against MSC test cases. Then, the standard model is checked for feature inter-
actions. Finally, the refined model is produced.

The approach to model SIP and its services begins with modeling the core
signaling functionality of SIP; we call this the basic (telephony) service of SIP.
The basic service includes establishing a two party call, terminating a two party
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call, suspending the call, presenting dial tone, busy signal, no answer signal,
ringing, and alerting signal. The user agent and proxy are the only SIP entities
that are modeled. After we complete the basic service, we add additional SIP
services such as multi-party call signaling features (call redirection, forwarding,
and holding (suspending)) to the model. These protocol features are essential
to enabling the development of more complex telephony features such as CFB,
CW, OCS, TCS, etc. Advanced Internet telephony features such as Call Forking
(CF) and Auto-callback (ACB) will be added at the later stage. The complete
SDL model consists of over 60 pages of diagrams, thus only selected diagrams
will be presented in this paper.

4 From Use Case Diagrams
to Use Case Scenarios as MSC

We begin our modeling exercise with use case analysis. The following subsections
describe how use case diagrams and use case scenarios are derived from existing
informal service specifications [3, 9, 10].

4.1 Defining Use Cases

Our use cases are defined in forms of use case diagrams [12]. They are based
on the informal call flow diagrams and textual service specification described in
various IETF documents [3, 9, 10]. Each actor in our use cases has a specific role
in a service; Figure 5 shows the use case diagram of Call Forward Busy (CFB).

In this example, there are three distinct actors (originator, forwarder, and
participant/forwardee). In Sect. 5, we show an originator corresponds to the
user agent process SipUserAgent1 1. The forwarder corresponds to the user agent
process SipUserAgent1 2. The forwardee corresponds to the user agent process
SipUserAgent1 3. The “indicate busy” use case extends the “make a call” use
case. The “extend” relationship is used to describe additional functionality that
the extended use case has. We will show how use case scenarios can be derived
from such user case diagram in the next section.

<<extend>>

<<extend>>

Indicate busy Forwarder

Forward call

on busy

Make a call 

Originator

Participant

Fig. 5. Use Case Diagram of Call Forward Busy
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Fig. 6. Call Forward Busy Use Case Scenario

4.2 Defining Use Case Scenarios as MSC

Since the IETF drafts have provided a call flow diagram or success scenario for
each sample service in graphical notation [9], we can translate these scenarios into
message sequence charts. However, we note that these call flow diagrams only
include the sequence of exchanged SIP messages at the protocol level. They do
not represent service scenarios in the sense of use cases. In the previous section,
we show how we apply use case analysis and come up with use case diagrams.

Following standard practice of software engineering, we think that it is im-
portant to define service usage scenarios at the interface between the user and
the system providing the communication service. We have therefore associated
each use case (“make a call”, or “indicate busy”, or “forward call on busy” . . . )
to a partial trace of a certain call flow scenario. Then, a use case diagram which
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contains the relationships between use cases and actors represents a full trace
of a service. Thus, we can translate a use case diagram to at least one service
usage scenario. As an example, Fig. 6 shows a use case scenario (service usage
scenario) of CFB, which corresponds to the use case diagram in Fig. 5 and also
to the call flow diagram of CFB found in [9]. We have also defined an abstract
user interface (see Sect. 6.3) which represents the interactions at the service
level. These interactions between the users and the SIP system describe use case
scenarios of SIP services. The users are the actors of the use case scenarios and
are represented by the environment env 0 in SDL.

5 Converting Call Flows to MSC as Test Case Scenarios

The combination of the use case scenario with the corresponding scenario of
exchanged SIP messages from [9] is represented in Fig. 7. We may call such
a combined scenario a service and protocol scenario. It can be used as a test
case for validating the SDL specification of the SIP protocol, as explained in
Sect. 8.

After having defined our use case scenarios, which correspond largely to the
call flow diagrams that we found in [9], we can combine the use case scenario
with the corresponding scenarios of exchanged SIP messages from [9]. Figure 7
shows such an MSC corresponding to the use case of Fig. 6. We may call such
a sequence chart a “combined service and protocol scenario”. Such a combined
scenario may be used as a test case for validating the SDL specification of the
SIP protocol, as explained in Sect. 8. The test cases are written as message
sequence charts because we use the Telelogic Tau’s Validator to verify our SDL
model against the combined scenario.

The sample call forward busy described in the IETF SIP Service Example
draft [3], which is shown in Fig. 7, is used to demonstrate our process of con-
verting informal requirements to message sequence charts. In Fig. 7, user ‘A’
calls user ‘B’ who is busy and replies with a busy response message. Then, the
proxy forwards the call to user ‘C’. Because Fig. 7 can be used as a test scenario
MSC against which the model is verified, such test scenario must be a complete
trace which includes the initialization phase of the simulation. However, the ini-
tialization phase (sequence NewInstance, Whoami, Id, and Ready of operational
management signals, see Sect. 6.1) is not part of the service specification; it is
our invention to facilitate simulation and verification of the model.

The call flow diagram and the service requirements of call forwarding de-
scribed in [10] can be used in conjunction for creating a formal call forward busy
specification. Before we begin developing the SDL model, we need to articulate
the requirements in formal notations. The first step is to convert the call flow
diagram to a syntactically correct message sequence chart. In Fig. 7, the method
name of the request message (‘INVITE’) is converted to an SDL signal (or MSC
message). The SIP message parameters would become the signal parameters.
Also, we can use co-regions to express the general ordering of messages because
the SIP RFC indicates that the arrival of a call setup response message such
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Fig. 7. Call Forward Busy Test Scenario in IETF SIP Service Examples Draft

as ‘TRYING’ or ‘RINGING’ can be out of order. However, we decided that we
could not use co-regions in our message sequence charts because Tau does not
support co-regions in the validation process. The symbol of instance end is used
to end all instances in our message sequence charts because it defines the end of
the description of an instance in MSC; it does not define the termination of the
instance.

An action that describes the interaction between a SIP entity and a non-SIP
entity is written as a signal/message from a SIP entity to the environment in
our message sequence charts. For example, ConnectVoice is a signal that is sent
from the user agent to the media controller to establish RTP voice streams. The
SelectLine signal is used to select the line on the phone. Evidently, our use case
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scenarios written as message sequence charts together with the SDL model give
a more precise formal service specification of SIP services than the IETF drafts.

After we have developed the SDL system model for SIP, we would verify
the model against these message sequence charts which serve as the basic SIP
compliant test cases for the system model. The final system model that includes
all the preventive measures for feature interactions is the specification of the SIP
protocol entities. The SDL model may also be used to synthesize the code base,
but it is beyond the scope of this paper.

6 Defining the Structural Model

In this section, the structural definitions of the SIP entities are discussed. The
relationship between modeled entities, their interfaces, and attributes are con-
sidered parts of the structural definition. A SDL system represents static in-
teractions between SIP entities. The channels connected between various block
instances specify the signals or SIP messages that are sent between user agents
and/or proxies. Block and process types (SipUserAgentType, SipProxyType . . . )
are used to represent SIP entity types such as user agent and proxy. In addition,
the Tau tool Organizer component [7] allows the service designer to partition
the specification into a number of modules, called SDL Packages. SDL Packages
are used to package SDL entities for reuse.

6.1 Core SIP Entities

The following subsections describe the two main SIP entity types in the model:
User Agent and Proxy.

User Agent. A SIP User Agent contains both, what is called in SIP, a user
agent client (UAC) and a user agent server (UAS). Since a user agent can only
behave as either a UAC or UAS in a SIP transaction, the user agent is best
represented by the inheritance of UAC and UAS interfaces. The inheritance
relationship is modeled using separate gates (C2Sgate and S2Cgate) to partition
the user agent process and block into two sections: client and server. The Envgate’
gate manages the sending and receiving of “Abstract User” signals between the
user agent and the environment (see Fig. 8). An instantiation of a block type
represents an instance of a SIP entity such as user agent or proxy, and contains
a process instance that describes the actual behavior of the entity. The process
definition file contains the description of all the state transitions or behaviors of
the features to which the SIP entity has subscribed. In addition, each SIP entity
must have a set of permanent and temporary variables for its operations. In the
case of a user agent, the permanent variables store the current call processing
state values of the call session (To, From). The temporary variables store the
values of the consumed messages for further processing.
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/* Author: Ken Y. Chan */
/* Email: kchan_uo@yahoo.ca */
/* Copyright @2002 */

USE SipMessages;
USE SipEntities;

system SipSystem2 1(1)

Proxy: SipProxyBlockType

OUA : SipUserAgentBlockType

TUA : SipUserAgentBlockType

EnvP

(MPhoneSendSignals)
Envgate

ChPtoO
(SipS2CMsgs)

P2Cgate

CtoSgate

Env1 (MPhoneReceiveSignals)

(MPhoneSendSignals)

Envgate

NullCh
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StoCgate
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S2Pgate
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(MPhoneReceiveSignals)
(MPhoneSendSignals)

Envgate

ChOtoP

(SipC2SMsgs)

CtoSgate

C2Pgate

chPtoT

(SipC2SMsgs)

P2Sgate

StoCgate

Fig. 8. System Diagram of Proxy and User Agents

Proxy. Similar to a user agent, a proxy consists of client and server portion.
It tunnels messages between user agents but also intercepts incoming messages,
injects new messages, or modifies forwarding messages on behalf of the user
agent(s). A proxy is also a favorite entity to which features are deployed. If a
proxy needs to keep track of the states of a session for a feature, it is consid-
ered a stateful proxy, and vice versa. A SIP Proxy has four gates that interact
with user agents or proxies: client-to-proxy (C2Pgate), proxy-to-client (P2Cgate),
server-to-proxy (S2Pgate), and proxy-to-server (P2Sgate). The Envgate gate
manages the sending and receiving of “Abstract User” signals between the user
agent and the environment (see Fig. 8).

In our SDL model, we use different SDL systems to represent different struc-
tural bindings between SIP entities and to simulate a particular set of call sce-
narios. The most complex system in our telephony model (see Fig. 8) realizes
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the concept of originating and terminating user endpoints. It contains an origi-
nating user agent block, a proxy block, and a terminating user agent block. The
originating block contains all the user agent process instances that originate SIP
requests while the terminating block contains all the user agent process instances
that receive these requests. Upon receiving a request, a terminating user agent
would reply with the corresponding response messages. It is important to note
that only the originating user agent and proxy instances can send SIP requests
(including acknowledgments).

All blocks are initialized with one process instance. During the simulation,
a NewInstance “Misc User” signal can be sent to a process instance to create a
new process instance. Signals such as NewInstance, Whoami, Id, and Ready’ are
not “Abstract User” signals. They are created for the purpose of operational
management, configuration and administration. We grouped all non-SIP signals
to the Envgate’ gate. We believe it was an oversight. We should have created
different gates for different types of environmental signals. This would be a part
of our future work.

Before the first “INVITE” message is sent, the environment must initialize
each user agent and proxy instance with a unique Internet address by sending
them a message called Whoami. The user agent instances would in turn send an Id
message along with its Internet address and process id (Pid) to the proxy. Thus,
the proxy can establish a routing table for routing signals to the appropriate
destinations during simulation. Similar to the user agent, a proxy has a set of
permanent and temporary variables for its operations. In Fig. 9, we have a block
interaction diagram that describes the relationship between the process set and
its block.

6.2 SIP Messages

In this case, SIP messages are defined as SDL signals in the SIPMessage pack-
age. We have defined only the main header fields of the SIP header because we
are interested in only the operation (method) and the endpoints of the call ses-
sion. These fields in a SIP message are represented by the corresponding signal
parameters. Since we could not find any SDL package that supports linked list
data structure in Tau, the number of variable fields such as ‘Via’ and ‘Contact’
are fixed in our model. Complex data and array types of SDL have been tried
for this purpose, but were dropped from the model because they may cause the
Tau validation engine to crash. Instead, we used a fix number of parameters to
simulate these variable SIP header fields.

6.3 Abstract User Interface

As mentioned in Sect. 4, a set of user signals (see Fig. 10), that is not part of
the SIP specifications [1, 3, 9], has also been defined here to facilitate simulation
and verification. They represent the interface between the user and the local IP-
telephony equipment in an abstract manner; we call this interface the “Abstract
User interface”. The modeling of these user-observable behaviors is essential to
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/* Author: Ken Y. Chan */
/* Group: University of Ottawa */
/* Copyright @2002 */

block type SipProxyBlockType ProxyProcessInteractions(2)

SipProxy (1,10): SipProxyType

P2Sgate
C2Pgate Ch1

(SipC2SMsgs)
C2Pgate

ch2

(SipC2SMsgs)
P2Sgate

ch4

(SipS2CMsgs)
P2Cgate

P2Cgate
S2Pgatech3

(SipS2CMsgs)

S2Pgate

Envgate

chP

(MPhoneSendSignals)

Envgate

Fig. 9. Block-Interaction Diagram of Proxy Type

describe feature interactions; however, the SIP protocol messages described in
the SIP standard do not describe these user interactions properly. For example,
an INVITE message in SIP may play different roles. It is more than just a call
setup message; for instance, it may be used for putting the call on hold in the
middle of a call (mid-call features) [3]. To make the simulation as realistic to real
phone calls as possible, the “Abstract User Interface” includes signals such as
Offhook, Onhook, Dial, SelectLine, CancelKey, RingTone, AlertTone, TransferKey
which relate to the actions that are available on most telephones units on the
market (see Sect. 4 and Fig, 6).

The parameters of each “Abstract User” signal are designed to give an un-
ambiguous semantics to a user action. For example, the ConnectVoice signal has
five parameters: From’s user and domain, To’s user and domain, and call-id.
These parameters mark the logical endpoints of a call segment, which is used by
a media controller to establish a voice stream between the two hops. All the out-
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/* Author: Ken Y. Chan */
/* Group: University of Ottawa SITE */
/* Copyright @2002 */

package SipMessages BasicUserSignals_Defs(4)

/*  Basic User Call Control Signals */
/*  Note: all addresses and uris consist of two parts: userid and domain */
/*  e,g, SelectLine(<globally unique call id>) */
/*         Dial(<sip destination address>) */
SIGNAL OnHook, OffHook, SelectLine(Charstring), Dial(Charstring, Charstring);
SIGNAL HoldKey, MuteKey, CancelKey;

/* Misc User Signals */
/* e.g. Whoami(<the useragent uri>) */
/*        SetBusyStatus(boolean) − activate aor deactivate user presence status */
SIGNAL Whoami(Charstring, Charstring), Id(Charstring, Charstring, PId),Ready, NewInstance;
SIGNAL SetBusyStatus(boolean), SetCallForkStatus(boolean), SetProxy(Charstring);

/* Basic Media Control Signals */
/* e.g. ConnectVoice(<originator (from) uri>, <destination (to) uri>, <call id>) */
/* e.g. DisconnectVoice(<originator (from) uri>, <destination (to) uri>, <call id>) */
/* e.g. MuteVoice(<originator (from) uri>, <destination (to) uri>, <call id>) */
SIGNAL ConnectVoice(Charstring, Charstring, Charstring, Charstring, Charstring);
SIGNAL DisconnectVoice(Charstring, Charstring, Charstring, Charstring, Charstring);
SIGNAL MuteVoice(Charstring, Charstring, Charstring, Charstring, Charstring);

/* Audible Signals */
/* Tone−based signals are audible only when the headset is off hooked. */
/* Other signals are audible or observable only when the headset is on hooked. */
/* e.g. Alerting(<call id>), OnHoldSign(<call id>) */
SIGNAL Alerting(Charstring), OnHoldSign(Charstring);
SIGNAL RingTone(Charstring), BusyTone(Charstring), DialTone(Charstring);
SIGNAL MusicOnHoldTone(Charstring), WaitingTone(Charstring);
SIGNAL PlsHangUpTone(Charstring), NoAnswerTone(Charstring);

/* Signal Lists */
SIGNALLIST PhoneSendSignals1 = Dial, SelectLine, HoldKey, MuteKey,
                                CancelKey, OnHook, OffHook, 
                                 Whoami, Id, Ready, SetBusyStatus, SetCallForkStatus, SetProxy;
SIGNALLIST PhoneReceiveSignals1 = Alerting, OnHoldSign, RingTone, 
                                BusyTone, DialTone, MusicOnHoldTone, WaitingTone, 
                                PlsHangUpTone, NoAnswerTone;
SIGNALLIST MGCReceiveSignals1 = ConnectVoice, DisconnectVoice, MuteVoice;

SIGNALLIST BPhoneSendSignals = (PhoneSendSignals1);
SIGNALLIST BPhoneReceiveSignals = (PhoneReceiveSignals1),
                                                          (MGCReceiveSignals1);  
SIGNALLIST User2UAMsgs = (BPhoneSendSignals);                                                                  
SIGNALLIST UA2UserMsgs = (BPhoneReceiveSignals);

Fig. 10. “Abstract User” Interface (Signals)

put signals have the call-id as their parameter that represents the line number
of the call.

Finally, one may ask how these high-level “Abstract User” signals are con-
nected to the protocol’s low-level primitives (SIP messages). We initially consid-
ered having a dedicated process in each SIP entity block (SipUserAgentBlockType
and SipProxyBlockType) to map these user signals to SIP signals which are man-
aged by another dedicated process (SipUserAgent and SipProxy). However, we
found it would introduce unnecessary complexity to the design so we abandoned
the approach. Instead, each block type has one process which contains all the
behavior of the block type. The mapping between “Abstract User” signals and
SIP signals is simple. In Sect. 7, Fig. 11 shows when the user agent receives
a HoldKey “Abstract User” signal at the Connect Completed state, it updates its
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state variables, sets the timer, and sends the corresponding Invite message to
the destination. Then, the user agent would make a state transition from the
Connect Completed state to SentOnHold state.

Similarly, when the originating user agent receives a success response from
the destination, the user agent would cancel the timer and send the correspond-
ing OnHoldSignal signal to the environment (the caller phone alerts the user with
an On-hold tone). Finally, the user agent would make a state transition from the
SentOnHold state to the OnHold state. In general, the mapping between “Ab-
stract User” signals and SIP signals is based on a relationship of trigger events
and actions. For example, an “Abstract User” signal can trigger the sending of
a SIP signal, and vice versa. We will explain this in more detail in Sect. 7.

7 Behavior Specification

7.1 User Agent Process Specifications

In general, a SIP feature or service is represented by a set of interactions be-
tween users and the user agent processes, and possibly the proxy processes. Each
process instance plays a role in a feature instance. A process instance contains
state transitions which represent the behaviors that the process instance plays
in a feature instance. In our model, we capture the behavior of a SIP entity
in an SDL process type (such as UserAgentType). The first feature we model
is the basic SIP signaling functionality, also known as the basic service. Each
process type has state transitions that describe the basic service. In the case
of a user agent, the process includes the UAC and UAS behavior. We define a
feature role as the behavior of a SIP entity that makes up a feature in a dis-
tributed system. A feature role is invoked or triggered by trigger events. The
entry states of a feature role in a SIP entity are the states for which the trigger
events are defined as inputs. For example, the on-hold feature can be triggered
in the Connect Completed (entry) state by an INVITE message with ‘ONHOLD’
as one of its parameters (Fig. 11). After the invite message is sent, a response
timer is immediately set. Then, the user agent is waiting for the on-hold request
to be accepted. When the other user agent responds with an OK message, the
requesting agent would cancel or reset the response timer and inform the device
to display the on-hold signal on the screen.

In general, trigger events are expressed as incoming signals; whereas pre-
condition, post-conditions, and constraints are expressed as enabling conditions
or decisions. Actions are tasks, procedure calls, or output signals. As a triggering
event is consumed by the user agent process, the parameters of the event may
be examined along with the pre-conditions of the feature. Then, actions such as
sending out a message and modifying the internal variables may be executed.
Post-conditions and constraints on the action may also be checked. Finally, the
process progresses to the next state.

Although we have described the skeleton of the model (systems, blocks, data
variables in processes), we have not defined the essential behavior of the model,
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/* Author: Ken Y. Chan */
/* Group: University of Ottawa SITE */
/* Copyright @2002 */

process type SipUserAgentType SendOnHold(33)

Connect_Completed SentOnHold

Response(tCode, tFromUid, tFromDomain, tToUid, tToDomain, 
tCt1Uid, tCt1Domain, tCt2Uid, tCt2Domain,
tVia1, tVia2, tVia3, tCid, tCSeqNum, tCSeqMethod, 
tSdp1Key, tSdp1Value) 

HoldKey

call checkResponse(tRc, tCode, ’OK’, 
tCid, Cid, tCSeqNum, tCSeqMethod,

CSeq1Num,CSeq1Method, CSeq2Num, CSeq2Method,
CSeq3Num, CSeq3Method);

tCSeqNum := tCSeqNum + 1;
tCSeqMethod := ’INVITE’;

call addToCSeq(tRc, tCSeqNum, tCSeqMethod, 
CSeq1Num, CSeq1Method,
CSeq2Num, CSeq2Method, 
CSeq3Num, CSeq3Method);

tSdp1Key :=  ’c’;
tSdp1Value :=  ’ONHOLD’;

tRc

Invite(tReqUriUid, tReqUriDomain, FromUid, FromDomain, 
ToUid, ToDomain, Ct1Uid, Ct1Domain, Ct2Uid, Ct2Domain,
Via1, Via2, Via3, Cid, tCSeqNum, tCSeqMethod,
Sdp1Key, Sdp1Value) to tNextHop via C2Sgate

reset(RespTimer);
call removeCSeq(tRc, tCSeqNum, tCSeqMethod, 

CSeq1Num, CSeq1Method,
CSeq2Num, CSeq2Method, 
CSeq3Num, CSeq3Method);

set(now+RespTimeout, RespTimer);

OnHoldSign(CId) via Envgate

SentOnHold

ConnectVoice(FromUid, FromDomain, ToUid, T

OnHold

(True)

(False)

Fig. 11. SipUserAgent Sending OnHold

which is defined by the state transitions of the processes. The question is how
to come up with the state transitions for the “initial” models. Since we have
a message sequence chart describing the success scenario of a two party call, we
assign a unique state to each input and output of the instance type (user agent
or proxy type). For example, if Connect Request state is the current state and we
have received a HoldKey signal, we would send an Invite request to the other user
agent. We do not put any timers in the initial model because we would like to
produce a simple rapid prototype model that we can experiment with. However,
we add timers (e.g. response timer) to the standard and refined models.

A state transition occurs when 1) an “Abstract User” signal is received from
the environment, 2) a request or response message is received, or 3) a continuous
signal is enabled. The so-called Continuous Signal in SDL is used to model the
situation in which a transition is initiated when a certain condition is fulfilled. For
example if the UAS is busy, the boolean isBusy would be true in the Server Ring



Modeling IETF Session Initiation Protocol and Its Services in SDL 369

state. The UAS would immediately send the BUSY response to the caller. This
way, we would not have to worry about the timer expiration because we do not
need to send a busy toggling signal to simulate busy during a simulation. An
asterisk ‘*’ can be used in a state and signal symbol to denote any state or any
signal; its semantics is equivalent to a wildcard. A state symbol with a dash ‘-’
means the current state. Error handling, such as response timer expiration, can
easily be modeled with SDL timers and a combination of ‘*’ and ‘-’ state symbols.
For example, when the response timer expires, a timeout message would be
automatically sent to the input queue of the user agent process. The expiration
of the response message is generalized as the situation in which the receiving
end does not answer the request in time. Thus, a NoAnswer signal is sent to the
environment. Finally, the process can either return to the previous state or go
directly to the idle state through the Jump Idle connector in this case.

Moreover, we can add additional features or services such as CFB, OCS, and
other services, to the system. To add behaviors of additional features to a process
type, we can subtype a “basic” process type such as UserAgentType. The derived
type has the same interfaces and also additional state transitions [13]. We do
not want to add new interfaces (signal routes) to the process types because we
do not want to change the interfaces of the block types. If a feature requires new
SIP methods and response codes, we would not need to change the interfaces
because method names and response codes are simply signal parameters in our
model. Thus, we avoid the need to add new interfaces whenever a new feature
is defined.

7.2 Proxy Process Specification

A proxy is different from a user agent because a proxy processes messages ex-
changed between user agents or proxies. We model the proxy also as an entity to
which telephony features may be deployed. The proxy performs a predefined set
of actions based on the header information (e.g. originator and destination ad-
dresses) of the incoming message(s). A proxy listens for response messages from
the terminating user agent and forwards the response message to the originating
agent based on the routing information that was set during the initiation phase
of the simulation.

In summary, a state model of SIP and its sample services can be derived
from message sequence charts. Many protocol features such as timer expiration,
parameter checking, sending and receiving messages can be mapped to equivalent
structures in SDL. The object-oriented extension to SDL allows specialization
of telephony services. Thus, SDL is suitable in modeling telephony services. In
the next section, we will examine the validation and verification process.

8 Verification and Validation

The SDL specification that has been discussed in the previous subsection was
constructed using the Telelogic Tau tool version 4.3 and 4.4 [7]. Tau offers many
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verification or reachability analysis features: bit-state, exhaustive, random walk
bit state exploration and verification against a given MSC. Bit-state exploration
is particularly useful and efficient [14] in checking for deadlocking interactions
because it checks for various reactive system properties without constructing the
whole state space as the exhaustive approach does.

We verified our SDL model of SIP mainly by checking whether the model
would be able to realize specific interaction scenarios which were described in the
form of Message Sequence Charts (MSCs) [7, 15] (see Sect. 5). In fact, we used the
scenarios described informally in [1, 3], and rewrote them in the form of MSCs.
Then we used the Tau tool to check that our SDL model was able to generate
the given MSC. An MSC is verified if there exists an execution path in the SDL
model such that the scenario described by the MSC can be satisfied. Thus, an
MSC in Tau is considered as an existential quantification of the scenario. When
“Verify MSC” is selected, Tau may report three types of results: verification of
MSC, violation of MSC, and deadlock. Unless Tau is set to perform 100% state
space coverage, partial state space coverage is generally performed and reported
in most cases. Verification of the model against an MSC in Tau is apparently
achieved by using the MSC to guide the simulation of the SDL model. As a result,
the state space of the verification has become manageable [16].

Although we could use MSCs as the test cases of our SDL model, MSCs have
limitations in terms of expressing quantification of instances and their behaviors.
For example, we could not find a way to write an MSC to verify this condition:
For all user agents that receive an ‘OK’ response, they must reply to the sender
of the response with an ‘ACK’ message. We note that such properties could also
be checked during simulation using Observer Process Assertions [7], as discussed
in Sect. 9. Also, Live Sequence Chart (LSC) [17], which has not been discussed
much in this paper, appears to be a promising extension to MSCs in this context.
However, Tau does not support LSC at the moment. Further research in the
application of LSC would be a part of our future works.

9 Advantages of SDL & Tau and Possible Enhancements

In the course of modeling SIP services, we discovered not only the advantages
but also some shortcomings of using SDL and CASE tools such as Telelogic Tau
to model an IETF application protocol such as SIP. SDL is a good language
to model SIP because SIP and its services can be easily expressed as interac-
tions between extended communicating finite state machines. We can simulate
a distributed SIP system a transition at a time using Tau. Other advantages of
using Tau include 1) the ability to express test scenarios as MSCs and to verify
these MSCs against the model, 2) the ability to verify the model does not vio-
late system properties by writing these test properties (e.g. livelock) as Observer
Process Assertions.

However, we find the lack of SDL packages that support a variety of abstract
data types in Tau has been a problem in modeling SIP. Unlike bit-oriented
protocols such as Ethernet and Token Ring, SIP is an ASCII-based, attribute-
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rich signaling protocol with mandatory, optional and variable size parameters.
If we were to model SIP messages as SDL signals, we could not easily insert,
remove, search, and modify values from the optional and/or variable size header
fields. Although it is not impossible to model variable header fields with fixed size
arrays in Tau, it is a very inconvenient task. Many programming languages offer
the language feature of pointer (C++ [18]) and/or reference (Java [19], C++)
so that a programmer could build his/her customized data structures. Pointer
is a dangerous programming feature that is normally not included in formal
languages. The SDL language could be extended with additional built-in ADTs1.
We believe support for common abstract data types such as linked list and hash
table should be made mandatory in SDL. This would be sufficient to enhance
our modeling experience. A linked list can be used to describe a variable-length
parameter list whereas a hash table can be used to store all the key-value pairs
in an SDP body. These two abstract data types eliminate the need to re-index
the content. Although SDL has the Vector type which is basically a subtype of
Array, this Vector type does not have the properties of a Java Vector; it does
not have insert, remove, and update operators.

Secondly, we believe the SDL language should be extended with string pro-
cessing facilities. In programming languages such as Java and C++, the lan-
guage definition comes with string processing libraries. For example, the int
indexOf(String substring) operator of the String class in Java returns the index
position of the first occurrence of the substring in that string object instance [19].
Similar operations can be added to the SDL language. Furthermore, regular ex-
pression operators may be added to the SDL language. These string processing
operations would facilitate the checking and comparisons of SIP header values.
Without these operations, it is difficult to develop a complete model of an IETF
application protocol such as SIP.

Furthermore, we find that the Tau validation tool needs to offer more flexible
verification features. For example, the ability to incorporate model checking of
the SDL system using temporal logic formula would be a bonus. We may use
temporal logic formula to verify more complex distributed system properties
such as live-locks. In addition, we could not easily specify actors in our use case
scenarios; we group all the actors together as the environment. We could create
additional actor/user processes to simulate actors. However, if we were to show
the interactions between actors in our use case scenarios, the message sequence
charts would also display the exchange of internal SIP messages between user
agent and proxy processes. We could probably develop an actor-layer to partition
user signals from internal signals but it would not be a trivial task. Ideally, Tau
could offer different environment instances for different channels to a system.
This way, we would not need to develop our actor-layer in the model.

Last but not least, we find that the SDL editor lacks GUI context sensitive
features, such as allowing a designer to select one of the existing state names
1 Editorial note: implementation of the SDL-2000 data features added since SDL-92

such as object date types may meet some of these needs. Alternatively users could
donate useful data type definitions to an open source library.
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when he/she creates a new state label, that are normally found in other CASE
tools such as Microsoft Visual Studio [20]. Cutting and pasting objects between
pages is also not always allowed; these some the minor improvements that can
be made to the tools.

10 Conclusion and Future Work

In this paper, we have described our approach to the formal modeling of the
IETF Session Initiation Protocol (SIP) and its services in SDL. We have dis-
cussed the advantages and shortcomings of using a formal language such as SDL
to model an IETF application signaling protocol: SIP. Moreover, we have shown
that modeling a complex IETF protocol such as SIP using CASE tools such
as Telelogic Tau is feasible. Also, we have explained that the “Abstract User”
interface that we developed has allowed us to develop a more user-centric and
precise formal service specification for SIP. We believe SIP or any IETF appli-
cation protocols should be specified from a user-centric perspective. Currently,
some of the IETF RFCs and drafts for the application protocols are not written
with use case analysis in mind. Many researchers have found IETF documents
difficult to read. In addition, we have shown that our SDL framework allows us
to reuse and to add SIP services to the core protocol quite easily. Furthermore,
we have discussed the enhancements that may be made to the SDL language
and Tau tools to improve the modeling experience of IETF protocols.

As part of our future work, we would like to modify our model to support
the new SIP standard which is specified under [21]. We intended to start the
model with the latest standard but unfortunately the new RFC came to our
attention only in the later stage of our project. We have some ideas on how to
extend our model to support the new standard but it is beyond the scope of this
paper. In addition, we would like to use the Target Expert tool included in Tau
to generate target executables in the future.
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